

Background

Local councils are responsible for the environmental health of waterways in their area. An important aspect of this is stormwater treatment. You can get an overview of stormwater treatment in the AusEarthEd <u>blog</u> and model it as shown in the <u>video</u>.

Stormwater biofilters trap large items in nets or grates, allow sediments to settle in ponds, use vegetation to absorb excess nutrients, and direct water through sediments to trap fine pollutants. This is shown in the diagram below.

Measuring stormwater quality

Many different factors can be used to measure the quality of stormwater. These include:

- Suspended solids Suspended solids are the organic and inorganic items that remain suspended in water because they are small and light. Suspended solids make water cloudy and can clog the gills of aquatic animals.
- **Nutrients** Phosphorus and nitrogen are found in fertilisers, detergents and animal waste. They promote the growth of algae and can lead to eutrophication.
- Faecal coliforms Coliform bacteria are found in the faeces of animals. These bacteria are a

Resourced by

measure of contamination and health risk.

AUSTRALIAN

EDUCATION

SCIENCE

• **pH** – The pH of water reflects its alkalinity (>7) or acidity (<7). Water pH affects the health of aquatic organisms and vegetation along waterways.

We will analyse some of these factors to determine the efficacy of a stormwater quality improvement device (SQID).

Data Analysis

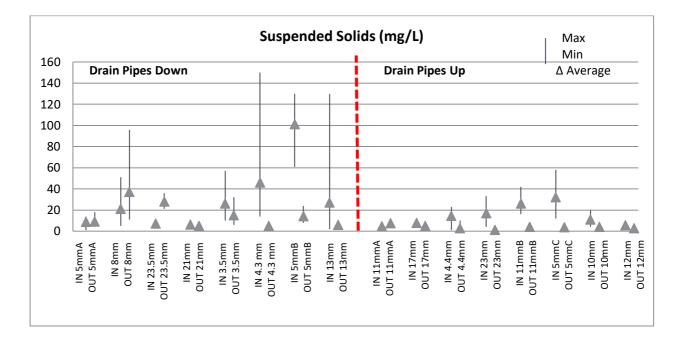
Data were collected by Hornsby Shire Council from the inlet and outlet of a biofilter installed and maintained by the council. The system is like that shown in the diagram above, with urban water flowing through a net into a large settling pond with a retaining wall. From there, water flows into a vegetated sand bed. The water filters through the sand bed, is collected by drains to flow into a sump, and flows on to waterways via outlet pipes. The pipes can be raised to keep the sand bed saturated or lowered to drain the water out of the bed between storms. Data from both conditions are included.

Six samples were taken from each inlet and outlet pipe. These were analysed in the same lab. Maximum, minimum, and average values are presented below.

Rainfall	Pipe	Inflow Suspended Solids (mg/L)			Outflow Suspended Solids (mg/L)			
(mm)	position	Max	Min	Average	Max	Min	Average	
3.5	Down	57	10	26	32	6	15	
4.3	Down	150	14	46	9	1	5	
4.4	Up	23	1	13.3	10	1	2.7	
5	Down	14	1	8.5	18	4	9	
5	Down	130	61	101	24	8	14	
5	Up	58	12	32	4	3	3.7	
8	Down	51	5	21	96	11	37	
10	Up	20	4	11	6	2	4	
11	Up	6	3	4.6	12	5	7.4	
11	Up	42	16	26	4	4	4	
12	Up	7	4	5.5	4	2	2.8	
13	Down	130	2	27	6	2	5.7	
17	Up	12	5	7.7	7	3	4.8	
21	Down	8	4	6	8	3	5	
23	Up	33	4	16.7	1	1	1	

Suspended solids (mg/L)

Resourced by



AUSTRALIAN

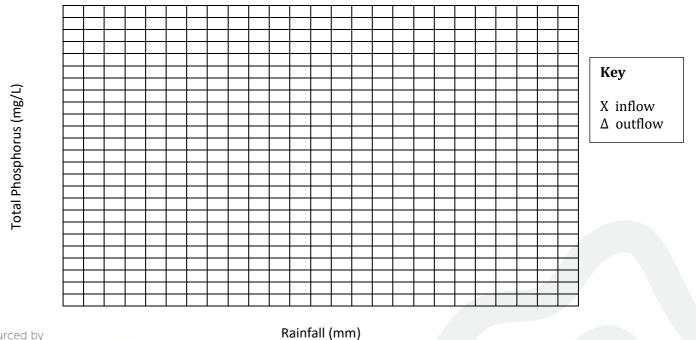
EDUCATION

EARTH SCIENCE

- 1. Are the suspended solids entering the system related to the amount of rainfall?_____
- 2. Using data from the table, evaluate the effect of the biofilter in removing suspended solids.

The box plot shows paired values for suspended solids at the inflow and outflow of the biofilter.
Evaluate the effect of pipe position on suspended solids, using data to support your answer.

Resourced by



Total phosphorus (mg/L)

Rainfall	Pipe	Inflow Phosphorus (mg/L)			Outflow Phosphorus (mg/L)		
(mm)	position	Max	Min	Average	Max	Min	Average
3.5	Down	0.74	0.43	0.515	0.32	0.09	0.15
4.3	Down	1.42	0.46	0.69	0.12	0.073	0.091
4.4	Up	0.37	0.13	0.21	0.11	0.061	0.073
5	Down	0.3	0.19	0.23	0.228	0.074	0.113
5	Down	1.28	0.78	1.03	0.13	0.09	0.11
5	Up	0.174	0.139	0.156	0.092	0.086	0.089
8	Down	0.31	0.21	0.25	0.19	0.1	0.13
10	Up	0.27	0.115	0.171	0.12	0.09	0.11
11	Up	0.282	0.142	0.194	0.43	0.088	0.14
11	Up	0.19	0.145	0.17	0.088	0.076	0.082
12	Up	0.086	0.069	0.077	0.076	0.05	0.065
13	Down	0.4	0.11	0.19	0.14	0.11	0.12
17	Up	0.143	.0.088	0.103	0.186	0.122	0.153
21	Down	0.276	0.143	0.194	0.093	0.063	0.08
23	Up	0.161	0.058	0.097	0.091	0.043	0.053

Graph the average values for phosphorus at inflow and outflow against rainfall in the grid below. 1.

Resourced by

2. Outline any trend(s) apparent in your graph. _____

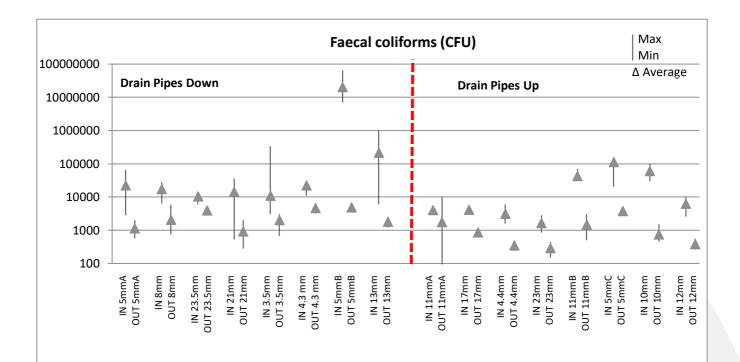
AUSTRALIAN

EDUCATION

EARTH SCIENCE

3. Phosphorus is dissolved in water (e.g., NOT part of suspended solids). Explain how the biofilter removes dissolved phosphorus.

- 4. Why is it important to reduce phosphorus levels in stormwater?
- 5. What can people do to decrease the amount of phosphorus in stormwater?
- 6. Examine inflow data for pipes up versus down. Are the two sets of data comparable? Do you think it is fair to compare the data on efficacy of pipe position?


Explain your answer.

Resourced by

Rainfall	Ріре	Inflow Faecal Coliforms (CFU)			Outflow Faecal Coliforms (CFU)		
(mm)	position	Max	Min	Average	Max	Min	Average
3.5	Down	340 000	3 000	10 800	3 000	670	2 034
4.3	Down	28 000	11 000	22 200	5 900	3 200	4 660
4.4	Up	6 100	1 600	3 140	440	240	346
5	Down	66 000	2 800	22 550	2 000	570	1 130
5	Down	64 000 000	7 000 000	20 175 000	5 400	4 100	4 833
5	Up	84 000	20 000	42 330	4 500	3 400	3 800
8	Down	28 000	6 400	17 330	5 800	750	2 090
10	Up	100 000	30 000	61 000	1 500	460	752
11	Up	4 900	3 100	4 060	9 900	54	1 770
11	Up	70 000	33 000	42 670	3 000	500	1 450
12	Up	10 000	2 600	6 200	560	260	380
13	Down	1 000 000	6 000	215 400	2 100	1 200	1 800
17	Up	5 100	3 200	4 120	890	810	860
21	Down	36 000	520	14 500	2 000	280	930
23	Up	2 800	840	1 650	440	150	290

Resourced by

AUSTRALIAN

EDUCATION

EARTH SCIENCE

- 1. The faecal coliform box graph uses a logarithmic scale. Justify this choice.
- 2. Faecal coliforms are an indicator of animal droppings in stormwater. To what extent can people affect this input? Explain your answer, identifying natural and modifiable sources.

3. Assess the effect of a biofilter in removing bacteria (as indicated by faecal coliforms) from stormwater.

Overall analysis

 The Council took 6 samples of inflow and outflow for each rain event and had the water analysed in a professional laboratory. What factors may have influenced the number of samples? Is this a valid and reliable study? Justify your answer.

Resourced by

AUSTRALIAN

EDUCATION

EARTH SCIENCE

2. Comment on the overall variability in this data. What challenges does this pose for environmental managers?

Building and maintaining SQIDs requires ongoing time and financial commitment from Council.
Analyse the benefits of SQIDs for human and environmental health.

Prepared with the support of Hornsby Shire Council

Resourced by

