

Igneous Rocks and Processes

Resourced by

Molten rock cools and solidifies

- Molten rock cools and solidifies
 - Intrusive (plutonic)

- Molten rock cools and solidifies
 - Intrusive (plutonic)
 - Extrusive (volcanic)

- Molten rock cools and solidifies
 - Intrusive (plutonic)
 - Extrusive (volcanic)
- Interlocking crystals

Classification

- Minerals
 - Size = rate of cooling

Classification

- Minerals
 - Size = rate of cooling
 - Composition = amount
 of silica present/
 chemistry, gas in magma

Terminology

- Aphanitic fine grained crystals
- Phaneritic coarse grained crystals

Terminology

- Aphanitic fine grained crystals
- Phaneritic coarse grained crystals
- Porphyritic large crystals in a background of smaller crystals (groundmass)
- Glassy very rapid cooling

Terminology

- Aphanitic fine grained crystals
- Phaneritic coarse grained crystals
- Porphyritic large crystals in a background of smaller crystals (groundmass)
- Glassy very rapid cooling
- Pyroclastic rock fragments
- Pegmatic very coarse grained

Bowen's Reaction Series

Common Igneous Rocks

	Mafic	Intermediate	Felsic
Aphanitic	Basalt	Andesite	Rhyolite
Phaneritic	Gabbro	Diorite	Granite
Dominant Minerals	Pyroxene Calcium-rich plagioclase feldspar	Amphibole Sodium & calcium- rich plagioclase feldspar	Quartz Orthoclase feldspar Sodium-rich plagioclase feldspar
Accessory minerals	Amphibole Olivine	Pyroxene Biotite	Muscovite Biotite Amphibole

Other igneous rocks to know

Komatiite

Pumice

Tuff

Obsidian

Earth resources

 Intrusive ore deposits – formed during the cooling of magma

Earth resources

- Intrusive ore deposits formed during the cooling of magma
- Exhalative ore deposits formed from volcanic materials which are extruded or 'exhaled' onto the Earth's surface through hydrothermal vents

Intrusive ore deposits

Fractional crystallisation

 As magma cools, some minerals form crystals before others

Differentiation – Pegmatite deposits

- As magma crystallises out minerals like pyroxene and calcium rich plagioclase, it becomes progressively more felsic
- Late stage magmas can be fluid rich and contain rare elements like lithium, tin and tantalum
- E.g. Greenbushes tin-tantalum-lithium deposit

Gravitational settling

- Early formed, heavier minerals sink to the base of the magma chamber
- E.g. chromium at Coobina, near Newman

Immiscible liquid separation

- Like oil and water, some minerals don't readily mix
- Heavy sulfur-rich liquid (high in Ni & Cu) separates from silicaterich liquid and sinks. E.g.
 Kambalda

Lamproite/Kimberlite Pipes

- Diamond-bearing igneous rocks (fine-grained ultramafic)
- 'Punch up' from depth of ~600km
- Usually vertical, pipe-like bodies
- Rise rapidly and cool rapidly

Mantle hot spots

- Hot spots are thought to be abnormally hot sections of the mantle
- The material is thought to originate at the coremantle boundary

Exhalative ore deposits

Black smokers

- Hot vents spewing clouds of black sulfur-bearing compounds
- Rich in copper, iron, zinc, etc.

• Supports a unique ecosystem

ausearthed.com.au

Volcanogenic Massive Sulfide (VMS) Deposit

Or volcanic hosted massive sulfide (VHMS)

- Hot, saline, metal-rich fluids are exhaled from hydrothermal seafloor vents or fumaroles
- Zinc, copper, lead, silver, gold, etc.
- E.g. The DeGrussa copper-gold deposit, 150 km NE of Meekarhara, hosted in what may have been a

back arc basin

Hot spring deposits

- Hydrothermal solutions reach the surface
- Superheated water overflows and precipitates out very fine silica (sinter)
- May contain lead, zinc, mercury, etc.

Volcanic fumarole deposits

- Hot volcanic gases condense and precipitate out hematite, sulfur and gypsum minerals
- Bacteria may also precipitate sulfur

Igneous intrusions

- Massive or tabular
- Discordant or concordant

References

•USGS, 1999, "Hotspots": Mantle thermal plumes, accessed 15 May 2012 from http://pubs.usgs.gov/gip/dynamic/hotspots.html

Unless otherwise stated all information and graphics are from:

- Tompkins, DE (Ed) 2011, Epxloring Earth and Environmental Science Stages 1, 2 and 3, Earth Science Western Australia
- ESWA photo/ graphic library

AUSTRALIAN EARTH SCIENCE EDUCATION

ausearthed.com.au

